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Abstract--The dynamic evolution of an elastoplastic softening solid is considered. A material model
including in the yield function the Laplacian of the plastic multiplier is used to regularize the
problem. The dynamic finite-step problem is formulated according to a generalized mid-point
integration scheme. Space discretization is carried out by a mixed finite element technique based on
generalized variables. A sufficient uniqueness condition of the finite-step solution is proved. For a
one-dimensional problem also a necessary and sufficient condition is presented. A simple numerical
test shows the regularizing properties (mesh-independence) of the proposed model and the positive
influence of the gradient term also on the time step amplitude ensuring uniqueness of solution.
Copyright !; 1996 Published by Elsevier Science Ltd.

1. INTRODUCTION

As nowadays is well known, the initial boundary value problems for classical softening
elastoplastic or damaging continua can become ill-posed and various bifurcation phenom­
ena such as strain localization may occur. These phenomena show up both in static and in
dynamic situations. Among many representative contributions we only quote here those of
Maier (1969), (1971), Hill and Hutchinson (1975), Rice (1976), and the recent critical
survey by Bazant and Cedolin (1991).

In numerical analyses the use of classical continuum softening models results in patho­
logical mesh-dependence [Bazant (1976), de Borst (1987)] and possible non uniqueness of
the incremental solution [Maier and Perego (1992), Comi et al. (1992a)].

Many approaches have been proposed in order to obtain mesh objectivity; all of them
imply the introduction of a characteristic internal length of the material which governs the
localized behaviour. Among various modifications intended to regularize the classical
softening continuum we quote here the introduction of a viscous term [see e.g. Loret and
Prevost (1990) for plasticity and Dube et al. (1994) for damage models], the polar continua
formulation [de Borst and Sluys (1991), Fleck and Hutchinson (1993), Steinmann and
Stein (1994)], the non-local models [Pijaudier-Cabot and Bazant (1987)], the gradient­
dependent models [Schreyer and Chen (1986), Miihlhaus and Aifantis (1991), de Borst and
Miihlhaus (1992), Aifantis (1992), Sluys et al. (1993), Benallal and Tvergaard (1995)].

The present paper deals with the dynamic evolution of an elastoplastic softening
continuum in the small deformation range, regularized by the introduction in the yield
function of the Laplacian of the equivalent plastic strain. In particular we focus on proper­
ties concerning the dynamic finite-step problem, i.e. the algebraic set of relations governing
the dynamic response of the structure in a single time-step after discretization in time and
space. The issue of uniqueness of the finite-step solution is addressed and sufficient con­
ditions are proved.

Uniqueness of incremental solutions is an important aspect of evolutive analyses, since
it rules out bifurcation and alternative dynamic scenarios of the kind pointed out by Maier
and Perego (1992). Sufficient uniqueness conditions for the dynamic finite-step problem
have already been proposed in Comi et at. (1992a) with reference to classical (non reg­
ularized) softening plasticity.
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In finite element analyses involving gradient dependent models, plastic consistency
cannot be enforced locally at the Gauss point level and ad hoc finite-element procedures
must be developed. In this paper, the finite element formulation is derived making use of
the so-called generalized variables approach, as proposed in Comi and Perego (l995b) in
the quasi static context. This amounts to a variationally consistent way of modeling in space
the unknown fields, including the internal variables which govern irreversible processes, thus
obtaining a constitutive law for the whole finite element aggregate.

The notion of generalized variables, introduced by Prager (1952) with reference to
beam problems, was extensively developed in the context of piece-wise linear plasticity by
Maier (1968), De Donato and Maier (1972), and Corradi (1978, 1983, 1986). More recently,
in Comi et al. (l992b) and Comi and Perego (l995a) generalized variable formulations
have been proposed for the standard internal variable material models of Halphen and
Nguyen (1975).

An outline of the paper is as follows. The equations governing the dynamic evolution
of an elastoplastic body are presented in Section 2, for a softening gradient-dependent
material model. Time discretization is introduced according to the generalized mid-point
integration rule proposed in Corigliano and Perego (1993). A mixed variational formulation
for the governing equations discretized in time is then presented; it extends to dynamics
the one obtained in Comi and Perego (1995b, 1996). The variational formulation represents
the basis for the introduction of spatial discretization in terms of generalized variables
which allows us to obtain the relations governing the dynamic finite-step.

Section 3 concerns some algorithmic aspects relevant to the proposed formulation; in
particular the choice of interpolations and the iterative solution procedure adopted to solve
the finite-step problem are discussed.

In Section 4 sufficient conditions for uniqueness of the finite-step solution are proved
for Mises and Drucker-Prager models, with isotropic hardening and second order gradient
term. One of these conditions provides directly an upper bound on the admissible time­
step.

In order to show the effectiveness of the generalized variables approach and the
regularizing effect of gradient-dependent models, numerical examples are presented in
Section 5, where a one-dimensional bar problem in pure tension is analyzed. The mesh
objectivity is shown and a discussion on uniqueness is presented. For this simple example
also a necessary and sufficient condition for uniqueness is obtained and compared with the
sufficient ones of Section 4.

2. FORMULATION AND DISCRETIZATION OF THE DYNAMIC PROBLEM FOR
GRADIENT-DEPENDENT PLASTICITY

2.1. Continuum problem
Let us consider the dynamic evolution of an elasto-plastic softening body of volume

Q and surface r in the small strain range. Dynamic equilibrium, initial conditions and
compatibility are expressed by the following set of equations:

cTO'(x, t) +F(x. t) = p(x)ii(x, t) in Q; n(x)O'(x, t) = f(x, t) on r l (1)

U(x, to) = uo(x); u(x, to) = uo(x) in Q

e(x, t) = Cu(x. t) in Q; u(x, t) = V(x, t) on r u

(2)

(3)

Equations (I) express dynamic equilibrium in volume Q and on the free part of the boundary
r l . For simplicity, viscous damping effects are neglected. Vector 0' contains six independent
components of the symmetric Cauchy stress tensor; CT is the differential operator of
equilibrium in matrix form (C being the operator of linear compatibility) ; F and f are body
and surface loads respectively; p is the mass density; u is the three component displacement
vector; a superimposed dot means derivation with respect to time; n is a matrix whose
entries are the components of the outward normal to the boundary r. The initial conditions
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on displacements and velocities are given by eqns (2). Linear compatibility in volume Q
and on the constrained part of the boundary C are described by eqns (3), where vector t

gathers the six independent components of the small strain tensor and U is the vector of
assigned displacements. Notice that, in order to maintain the scalar product and to easily
define the second invariant of the stress or strain tensors, vectors t1 and B are defined as
follows:

(4)

As a consequence, C has the following expression:

I Ia, 0 0 -0 ---;= (1~ 0,- ,
J2 ~

v!2

CT I 1 I
- 0 0, 0 -----;= (x 0 -----;= cc

,/2 ,,/2

c. I I
0 0 0 ---;= [0, -----;= C\

~2 v2 '

(5)

where c~ denote the partial derivative operator with respect to ~.

The material behaviour is governed by a standard elastoplastic associative model with
linear hardening or softening, modified by the introduction in the yield condition of the
second order gradient of the plastic multiplier, as proposed e.g. by Mtihlhaus and Aifantis
(1991), de Borst and Mtihlhaus (1992), Sluys et al. (1993).

t(x, t) = e(x, t) +p(x, t); t1(x. t) = E(x)e(x, t) in Q

CP(x, t) = cp(t1(x, t)) - h(X)A(X. t) +c(x)V1 ;.(x, t) - k(x) ~ 0: ). ~ 0; cp). = 0 in Q

p(X, t) = oaCP(t1(x. t))),(x, t) in Q

(6)

(7)

(8)

(9)

Equation (6a) expresses additivity of elastic e and plastic p strains, while eqn (6b)
expresses linear elasticity. Due to the definition of vectors t1 and t, the matrix of elastic
moduli E acquires the following form:

;. + 2)1 I. I. 0 0 0

;.+2)1 I. 0 0 0

;.+2.u 0 0 0
E= (10)

sym 2)1 0 0

2)1 0

2)1

where ;. and )1 are Lame's constants.
The elastic domain and the loading-unloading conditions are defined by eqns (7a-<i) ;

cp(t1) is an equivalent stress, h is the constant isotropic hardening/softening parameter, ;. is
the plastic multiplier, C is a non-negative diffusion parameter with the dimension of a force,
and k is the initial yield limit. If c = 0, the non standard term containing the Laplacian of
;. disappears and the classical plasticity model is recovered. In the fol1owing we will consider
linear softening behaviour, i.e. h < O. The equivalent stress cp(t1) is assumed to be given by



3884 C. Comi and A. Corigliano

a convex, order one homogeneous function of stresses; in particular we will consider the
Mises equivalent stress <p(0') = J3J; = J3/2sTs and the Drucker-Prager equivalent stress
<p(0') = J3J; +a.Id3, where vector s gathers the six independent components of the deviator
stress tensor defined analogously at 0' in eqn (4a), J2 is the second invariant of the deviator
stress tensor, II the first invariant of the stress tensor and a. the friction coefficient. Equation
(8) expresses the additional boundary conditions, in the form proposed by Miihlhaus and
Aifantis (1991), which are required to complete the problem due to the presence of the
gradient term (V2..l.) in the yield function, m is the outward normal vector to the boundary
r p of the plastic zone. These so called ambiguous boundary conditions are fulfilled if either
the plastic multiplier rate or its gradient in the normal direction are zero on the boundary
r p . Equation (9) gives the associative flow rule for the plastic strains.

As shown by Miihlhaus and Aifantis (1991), the present gradient-dependent model
can be interpreted as a simplified version of fully nonlocal models in which the stress at a
position x depends on the average strain within some symmetric neighbourhood of x
defined by a characteristic length of the material. The micro-mechanical grounds of the
inclusion of gradients in the constitutive model are discussed e.g. by Aifantis (1987, 1992).

The gradient-dependent plasticity formulation is apt to simulate shear banding and
localization phenomena exhibited by both ductile and quasi-brittle materials. The inclusion
of gradients in softening or damage constitutive laws makes it possible to describe not only
the inception of localization, but also the post-localization behaviour.

The regularizing effects due to the introduction in the yield condition of the Laplacian
of the plastic multiplier, with a positive coefficient c, have been discussed by several authors
[see e.g. de Borst and Miihlhaus (1992), Miihlhaus and Aifantis (1991), Sluys et al. (1993),
Benallal and Tvergaard (1995)]. In the dynamic context, Sluys et al. (1993) have shown
that, in the presence of a second-order gradient term, the wave equation remains hyper­
bolic and the initial value problem well-posed also in the softening regime. Furthermore,
wave propagation remains dispersive and the phase velocity remains real if the wave
length is greater than a material-dependent internal length which is related to the diffusion
parameter c.

2.2. Time discretization
Let to, t" ... , tm tn + I = tn + At, ... be convenient time instants along the time interval

over which the dynamic response of the body is sought. Consider the time step
At = tn+ 1 - tn : at t = tn all quantities are known and the solution must be computed at tn+ 1

for given load increments AF and Af. The time-integrated version of the dynamic initial­
boundary value problem (1 )~(9) is obtained by adopting distinct mid-point approximations
for velocities and accelerations, by enforcing dynamic equilibrium at the end of the step
and by making use of a backward difference scheme for the constitutive law:

(12)

(15)

(16)

where subscripts n, n + 1, n + {3 and n +}' ({3,}' E ]0, I]) mark quantities at tm tn +], tn + f3 and
tn +: respectively, A. denotes the increment of the quantity. over At and the explicit
dependence of all quantities on x has been omitted for notation convenience.

From eqns (II) it follows that:
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The introduction of eqn (17) into the equation of motion (12a) yields:

having set
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(17)

(18)

[
1-" 1 1 l* - I •• ~Fn + , = Fn + 1+p--.-un + -'13,,-un + -.--U"

-; i' tit yf3l1t2
(19)

The above approximate time integration scheme belongs to the class ofgeneralized midpoint
dynamic algorithms proposed in Corigliano and Perego (1993), where a discussion on non­
linear stability properties has been presented together with other features of the algorithm.
When 13 = y, the above class of algorithms coincides with the sub-class of the Newmark
family identified by Newmark parameters }'* = 213*. In particular by choosing 13 = 'I = 1/2
(i.e. 13* = 1/4, i'* = 1/2), one obtains the average acceleration method. Another noteworthy
choice is 13 = y = 0.6, this gives an algorithm with damping properties at the higher
frequencies which will be used in the numerical examples of Section 5.

As done in the quasi-static case [see Comi and Perego (1995b, 1996)], it is possible to
build a variational formulation of the dynamic finite-step problem (12b)-(16), (18). To this
purpose let us define the functional !E :

r r 1 ~ 1- In (cp(an + 1)-k)l1l.dO+ Jn 2hl.;+1 dO+ t2 C(Vl.n + I )T(VA,,+I)dO

- r F:ll l1udO - r C+Il1udr (20)In Jr,

A solution of the following saddle-point problem:

min max {!E] with l1i. E'% == {l1i, 1l1/. ?: 0 in O}
.1u.L\e.L\i. L\o

(21 )

is a solution of the dynamic finite-step problem. The converse in general does not hold true
since the functional is not convex in l1i. when softening is present. The proof of the above
statement follows the same path of the one presented in Comi and Perego (1996) for a
quasi-static evolution and is not duplicated here for brevity. We only recall here that the
minimization of (20) with respect to l1i. E ,%' gives rise to a variational inequality which, after
integration by parts, gives the loading-unloading conditions (14) in 0 and the boundary
conditions (15) on r. Therefore the additional boundary conditions involving l1i. are part
of the solution of problem (21) and need not be included in the definition of the admissible
set %. It is also worth noticing that conditions (15) are not directly the time integrated
version of condition (8).

2.3. Finite element discretization in terms ofgeneralized variables
A finite element formulation of the dynamic finite-step problem can be obtained by

introducing in the functional !E independent modeling of all fields:
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uh(x, t) = Nu(x)ii(t), eh(x, t) = NAx)e(t),

O'h(X, t) = N,,(x)it(t), ~Ah(X, t) = N;:(x) ~i(t)

(22a, b)

(22c,d)

where N, are matrices containing the interpolation functions for the field a. and barred
quantities are independent parameters. All vectors and matrices are to be intended as
referring to the whole finite element aggregate.

If the interpolations of conjugate fields e and 0' are chosen in a way which guarantees
conservation of the scalar product, the independent parameters can be interpreted as
generalized variables in Prager's sense [see e.g. Corradi (1986) and Comi et al. (1992b) for
details] :

it(t)TC(t) = In [O'\x, tWeh(x, t) dO = l1(t)T In N,,(X)TNe(x) dOc(t) <:> In N,,(X)TNe(x) dO = I

(23)

By also approximating the convex cone % by f and o/t by ojj

the discretized form of the optimization problem (21) reads:

min _max {2?} with M.. Ef, ~iiEojj
M.M.,'\;. ,'\1/

and

(25)

2? = L~P*iiTNJNuiidO+ L~CTN;ENeCdO+LitTN~(CNu~ii-Ne~c)dO

-L(cp(N"it)-k)N;~ldO+ lJhlTNTN;:ldO+ L~dT(VNJTVN!)dO

- r F*TN
u
~ii dO - r (TNu ~ii dr (26)

In Jrr

In (26), and from now onward, quantities at the end of the step, i.e. at tn + 1, are denoted
without subscript, e.g. it = itn + ~it = itn+ I'

The governing relations of the discrete dynamic finite step problem result from the
Kuhn-Tucker optimality conditions of problem (25) :

(27)

(28)

(29)

(30)

where the following definitions of generalized quantities have been introduced:

(31 )
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(33)

In the equilibrium eqn (27) and in eqn (3la), matrix L is the algorithmic mass
matrix and M is the consistent mass matrix of the finite element aggregate. For numerical
convenience the consistent mass matrix is often substituted by a lumped version.

The set of eqns (28)-(30) can be interpreted as a constitutive law for the whole
discretized structure. The gradient term of the continuum model gives rise to the matrix c
which is summed in eqn (29a) to the hardening/softening matrix ii. It is important to remark
that, due to the different structure of matrices ii and C, Ccannot be simply interpreted as an
additional hardening matrix. The presence of C in eqn (29a) allows for the regularizing
effects as it will be shown later.

Remark. Numerical solution of problems dealing with enhanced non-local constitutive
laws require the development of specific finite element formulations since the constitutive
law cannot be enforced locally at the Gauss point level as done in the usual displacement
based finite element method. The present generalized variable approach gives a variationally
consistent way to obtain such a formulation in which also the inelastic variables are
modelled and it naturally leads to a non-local discrete constitutive law.

3. ALGORITHMIC ASPECTS

3.1. Choice of interpolations
As usual in finite element modeling, some requirements concerning the choice of

interpolation functions must be satisfied a priori. Since first-order spatial derivatives of
displacements and of the plastic multiplier appear in the functional :£ of eqn (20), the
interpolation functions N,,(x) and N;.(x) must be at least CO continuous in n, i.e. also across
elements. As a consequence, the interpolation parameters ii and ~l most naturally acquire
the meaning of values of the corresponding approximated fields uh(x, t) and ~).h(X, t) at the
n" nodes of the structure. It is worth noting that, while the continuity requirement on N,,(x)
is usual in displacement-based finite element formulations, the continuity of N;(x) is here
originated by the gradient term in the constitutive law. For classical plasticity laws, plastic
multipliers could also be modeled as discontinuous across elements. Moreover, in order to
be consistent with the variational formulation (25), function rp must be convex. From
definition (32b) of rp, this entails further mild restrictions on the choice ofN;(x) which will
be assumed to be satisfied in the following.

As far as Ne(x) and N,,(x) are concerned. the only requirement is given by the orthog­
onality condition (23). A possible and convenient choice, proposed in Corradi (1986) and
in Comi et al. (I 992b) and which will be assumed in the following, consists of modeling
elastic strains and stresses in terms of their values at the Gauss points. These points are the
same as those used to numerically compute integrals in eqns (31 )-(33). Considering for
instance a function/(x), the integral over n is computed in the following way:

(34)

where ne is the number of elements; n"p is the number of Gauss points per element;
ncp = ngp x ne is the number of Gauss points in the whole structure; Xl and wi are the
coordinates and the weight of the j-th Gauss point; deL! is the Jacobian of the iso­
parametric mapping of element k. The weight Wq

, pertinent to the g-th Gauss point in the
global numeration, is defined by (34b).



3888 C. Comi and A. Corigliano

With the above definitions, the following interpolations for elastic strains are then
assumed:

Ne(x) == [diag(Nb(x)) . .. diag(NHx)) ... diag(NCfp(x))]; 9 = I ... nGp (35)

where NHx) are polynomial functions which vanish in all Gauss points except from the
g-th where they have unit value and diag(Nb), 9 = I ... nGp are diagonal matrices of order
equal to the number of the local independent strain components.

As a consequence of the above interpolation, the generalized variable vector ecollects
nGp sub vectors coinciding with the local approximated elastic strains en evaluated at the nGp
Gauss points.

The stresses are modeled by :

_ [diag(NbCx)) diag(NHx)) diag(NCf.p(X))]
Na(x) = ... ...-----

Wi wg wn,.p 9 = I ... nGp (36)

Therefore, the vector of generalized stresses it collects nGp sub-vectors which coincide with
the local approximated stresses (In evaluated at the nGp Gauss points multiplied by the
corresponding Gauss weight W.

The above choices for Ne and Na satisfy the condition (23c), as can be verified by
making use of eqns (34)-(36). Moreover, the matrix of generalized elastic moduli E turns
out to be block diagonal and the resulting generalized Hooke's law (28) decouples at the
Gauss point level, i.e. it can be imposed at each of the nGp Gauss points separately.

On the contrary, the continuity of N.; across elements implies that the matrices ii and
C exhibit a banded but non-diagonal pattern. Therefore the nn generalized yield modes ~o

depend on the nn generalized plastic multipliers ~fJ in a coupled way, the plastic part of the
generalized constitutive law involves simultaneously all the finite elements and cannot be
imposed separately at specific points.

For later use, let us also define the diagonal softening matrix ii:

with

ii == diag [jig]; jig = 8h(x9 ) Wql; g = I ... nGp
g

(37a, b)

Mises model

Drucker-Prager model

(37c)

where W 9 is the Gauss weight defined in eqn (34b) and I is the identity matrix of order
equal to the number of the local independent strain components.

In classical non-gradient plasticity full decoupling of the constitutive law at the Gauss
point level can be achieved by modeling the plastic multiplier in terms of its value at the
Gauss points by the same interpolation functions N'/; used for the strains (eqn 35) [see
Comi and Perego (1995a)].

To satisfy the stability condition of Babuska-Brezzi (Babuska (1973), Brezzi (1974))
in the elastic range one must assume a number of generalized stresses and strains which is
not less than the number of the free nodal displacements and ensure that Cii i= 0 for
any ii i= 0 (see Zienkiewicz et al. (1986)). These conditions can be easily fulfilled by the
interpolation (35) and (36) assuming a suitable number of Gauss points for each element,
for instance the number which would allow for a full integration of the stiffness matrix. It
should be noted that in this case the limitation principle proved in Stolarski and Belyschko
(1987) holds and the generalized variable approach, in the elastic range, turns out to be
coincident with the displacement formulation.
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3.2. Solution procedure for the finite-step problem
The nonlinear dynamic finite-step problem (27)-(30) can be solved iteratively accord­

ing to a Newton-Raphson or a modified Newton-Raphson scheme.
Each iteration can be divided into a predictor phase providing an estimate of dis­

placement increments on the basis of linearized equilibrium equations and a corrector phase
providing stresses which fulfill the constitutive law for assigned total strain increments.

Predictor phase-at the iteration i + 1 compute an estimate iii+ I of displacements at
tn + \ from:

(38)

where Si+ \ is a suitably chosen prediction matrix. In the following, Si+ I will be assumed
equal to the elastic predictor L +K E , K E = CTEC, for each step and iteration.

Corrector phase--eonsidering C Aii'+ 1 = C(ii'+ \ - Un) as the driving quantity, solve the
constitutive law checking first the plastic activation:

(a) if ei>;ial == ep,(an+EC Aiii+1) - «ii+c)ln), - k, > 0 for at least one C( E [1, nn], then solve
eqns (29) with: a = an + E(C Aiii+ \ - OipT (a) .11)

(b) if ei>;,al ~ 0 for every ct., then a = an+EC Aiii+ I and .11 = o.

What is peculiar about the generalized variable formulation for gradient plasticity
considered here is that not only the linear prediction, but also the nonlinear correction
must be carried out at the global level. Moreover, the non linearity of the equations
governing the corrector phase requires the use of an ad hoc iterative scheme, in addition to
the global Newton-Raphson procedure.

It is important to note that, for a class of material models including the Mises and the
Drucker-Prager models, it is possible to express the effective stress <peer) as a linear function
of A).: <peer) = <pllial+a A)., a being a constant. With the adopted interpolations for stresses
and plastic multiplier this property holds also for the generalized effective stress. The
nonlinear corrector phase can thus be recast in the form of a standard Linear Comp­
lementarity Problem in the unknowns .11 :

(39)

where q is a constant vector and D is a constant matrix whose definitions depend on the
effective stress.

The linear complementarity problem can be solved by standard mathematical pro­
gramming algorithms; in the numerical simulations of Section 5 we adopt the Man­
gasarian's scheme [Mangasarian (1977)].

4. UNIQUENESS CRITERIA FOR THE FINITE STEP SOLUTION

In the presence of softening behaviour, for an assigned discretization in space, unique­
ness of the solution for the dynamic finite-step problem is not guaranteed. In this section we
prove sufficient conditions for uniqueness of the finite step solution in terms ofdisplacements
increments and plastic strain increments. These conditions are proved under the following
assumptions, which particularize the formulation of Section 2 :

(a) the effective stress <p(er) is chosen equal to the Mises function: <p(er) =~ or
the Drucker-Prager function: <peer) = J3J2+ ct.!\ /3 ;

(b) interpolations of the independent fields are chosen as specified in Section 3.1 ;
namely stresses and elastic strains are modeled in terms of their values at Gauss points,
displacements and plastic multiplier are modeled in terms of nodal values and the interpo­
lations of plastic multiplier are such as to guarantee convexity of the generalized effective
stress ip;
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(c) a positive definite matrix (is assumed, deriving through eqn (31a) from a consistent
or a positive definite lumped mass matrix.

Proposition 1. Given the initial state at tn and the external load vector at tn + I, the
dynamic finite-step solution is unique in terms of flii and flp (and hence of M and fla), if
the matrix:

(40)

is positive definite.

Proof Consider two hypothetically different solutions of the dynamic finite-step prob­
lem (27)-(30) denoted by superscripts . and "; mark their difference with *, e.g.
ii* == ii' - ii" = flii*.

Being fla* = E M* in equilibrium with - (flii* (eqns 27, 28) and fle* + flp* com­
patible with flii* (eqn 30), the virtual work principle yields:

(41)

The convexity of 'P(a) and the loading/unloading conditions (29) allow to derive the
following inequality:

(42)

which is a consequence of Hill's maximum dissipation principle. By making use of (42),
eqn (41) can be transformed into the following inequality:

(43)

The first two addends in the above inequality can be interpreted as twice the algorithmic
kinetic energy and elastic strain energy in the step, respectively; they are never negative
and vanish if and only if flfi* = ii' -fi" = 0 and fle* = e' -e" = O. When matrix (ii+e) is
positive definite, uniqueness of ii, e, 1 follows; when matrix (Ii + c) is positive semidefinite
only uniqueness of ii and e is guaranteed. In the case here treated of softening behaviour,
a sign-definition to matrix (ii + c) cannot be given a priori. Nevertheless the following
inequality can be proved (see Appendix A) :

(44)

Moreover e is a positive semidefinite matrix, since the gradient parameter c in eqn (33a) is
non-negative. By taking into account inequality (44), the positive semi-definiteness ofe and
the compatibility relation (30), inequality (43) gives rise to:

- CTEJ{flii*},,:::_ _ ",0
E+h flp*

(45)

By hypothesis the matrix G of the above quadratic form g; is positive definite, then from
(45) it follows flii* = ii' - ii" = 0, flp* = p' - p" = 0 and uniqueness is proved.

Proposition 2. The dynamic finite-step solution is unique in terms of flii and flp if a
scalar ( > 0 can be found such that:

(a) matrix (- (KE is positive definite;
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(b) matrix (/(( + I)E + h is positive semidefinite.

Proof Split the quadratic form in (45) into the following sum of addends:

3891

(46)

(47)

(48)

(49)

Note that :#' 3 ~ 0 for any J 1+ ( ~ii* and ~p* iJ I + ( since it is twice the elastic energy

corresponding to M* = JI +(C~ii*-~P*/~.By hypotheses, :#'1 and:#'2 are non­
negative. Therefore, to comply with inequality (45), :#' I,:#'2and:#'3 must vanish separately.
Due to the positive-definiteness of L - (KE , :#' 1 = 0 implies ~ii* = O. :#'3 = 0 if and only if

~C~ii*= ~p*/JI +(, also ~p* = 0, which proves Proposition 2.

Proposition 3. The dynamic finite-step solution is unique in terms of ~ii and ~p if the
time step M for the adopted integration scheme fulfills the inequality:

~t < . == ~t~c
wMv (f3y

(50)

(WM being the highest eigenfrequency), with (such that the matrix (/(( + I)E+h is positive
semidefinite.

Proof Let 'fI denote the eigenmode matrix of the structural model supposed to be
elastic and let X denote the principal coordinates such that ii = 'fiX. Equivalent mass, elastic
stiffness and eigenfrequency of the j-th mode will be denoted by mj , k; and W j = (kjmi/2

.

In view of the definition ofL in (3la), the quadratic form g;l (eqn 47) can be written
as:

The positive definiteness of :#' 1 is guaranteed if the expression in round brackets is positive
for all j, which in turn is guaranteed by hypothesis (50). By proposition 2, uniqueness of
the finite-step solution follows.

Remarks
1. Proposition 3 gives the maximum time step amplitude M sc ensuring uniqueness.

M sc depends on the chosen dynamic integration algorithm through parameters f3 and (, on
the amount of softening through ( and on the inertia and stiffness of the system through
WM' The information given by proposition 3 is practically useful, in fact in eqn (50) WM, or
an upper bound on this quantity, is cheap to obtain and parameter ( can be computed at
the Gauss point level (once for all Gauss points if h is uniform in the structure) due to the
particular structure of hand E. A reasonably quick estimate of W M can be obtained by
computing the maximum eigenfrequency of a single element [see e.g. Hughes et al. (1979),
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Flanagan and Belytschko (1981)]. Propositions 1 and 2 are more difficult to apply since the
matrices involved are defined at the structural level.

2. Matrix C, coming from the second order gradient term, does not appear explicitly
in the above uniqueness conditions; in fact the non-negative term L11*TcL11* has been
dropped from (43), preserving the inequality. The positive effect on uniqueness of matrix c
comes out by considering that matrix ii+ccould be positive semidefinite also in the presence
of softening. The influence of c on the finite step amplitude M NSC necessary and sufficient
to guarantee uniqueness will be highlighted in the example of Section 5.

3. Viscous damping could be introduced in the model and uniqueness propositions 1­
3 could be proved without additional difficulties as done in Comi et af. (1992a) with
reference to classical softening plasticity and linear kinematic hardening.

4. If the uniqueness condition of Proposition 1 is fulfilled, the solution of the dynamic
finite-step problem is equivalent to the solution of a constrained minimum problem, as in
the case of stable materials. On the basis of this extremum principle it is possible to obtain
a sufficient criterion for convergence of the iterative predictor-corrector scheme outlined in
Section 3.2. Both the extremum property and the convergence criterion can be obtained
following the same path of reasoning illustrated in Comi et af. (1992a) which is not
duplicated here for brevity.

5. ONE-DIMENSIONAL PROBLEM

In order to investigate the regularization properties of the gradient model, to check in
this context the soundness of the generalized variable approach and to discuss the unique­
ness conditions proved in Section 4, it is here considered the one-dimensional bar problem
in pure tension. This has already been used as a reference problem in Sluys et af. (1993)
and allows for analytical as well as numerical derivations. The data concerning geometry,
material and loading conditions are given in Fig. I.

For this one dimensional problem the effective stress is assumed simply as cp(O") = 10"1,
which turns out to be linear in L1k In order to show this, consider the one-dimensional
Hooke's law in the finite-step, E being the Young modulus:

From the above relation one obtains:

(52)

0"=
E(e-Pn)

E
I + ~L1;.

(53)

Solving eqn (53b) for 10"1, one has cp(O") = 10"1 = Ele-Pnl-EL1;.. As remarked in Section

L

I~=====;======::::JI~
IA

L = 100mm

A= 1 mm2

{
o fort<O

F(t) =
0.75CToA for t ~ 0

p= 2.10-8 Ns2 /mm 4

0"0 =2MPa

E =20000MPa

h = -2000 MPa

c=50000 N

Fig. I. One dimensional problem: geometrical, loading and material data.
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3.2, the linearity of the effective stress in Llle allows us to formulate the corrector phase as
a linear complementarity problem.

5.1. Formulation and dynamic response
We have discretized the bar by truss elements, formulated according to that discussed

in Section 3.1, with a constant model for stresses and elastic strains (I Gauss point per
element) and a linear one for displacements and plastic multiplier (two nodes per element).
A lumped mass matrix has been assumed. The vectors and matrices concerning the single
finite element are shown in box 1, where !!" and l" are the volume and the length of the
finite element e, respectively.

N;: = I;
I

N' =-'
" Q"

N' = N' = 1(1 - ~) ~J' {:" = 1- I IJ.
U 'L I' I' . L I' I' '

1112
M' = pQ'L 0

U2J c l I; C' = -Q'
I 1'2 - I

I II
D' = 4Q'E

LI
IJ -I +h' +c'

Box I. Truss element: generalized variable matrices

Dynamic analyses were performed with 3 different meshes (20, 40, 80 elements),
following the iterative scheme proposed in Section 3.2, choosing for the dynamic integration
f3 = }' = 0.6 and assuming an elastic predictor at each iteration (modified Newton-Raphson
scheme). Even though the rate of convergence for the discretized residuum is only linear,
this scheme was preferred here to the Newton-Raphson one to avoid the computation of
the tangent matrix that. due to the non-local character of the constitutive law, would require
the inversion of matrices concerning the whole structure (see Comi and Perego (1996».
The time step amplitude has been assumed for all analyses equal to 5 x 10- 7 s. As will be
discussed later this amplitude ensures uniqueness of the dynamic finite step problem.

When the elastic wave front reaches the built-in end of the structure, plastic strains
develop in the element close to this end, due to the reflection of the wave and a localization
zone of plastic deformation emerges. The width of the localization zone is constant upon
mesh refinement. as shown in Fig. 2: it depends only on the internal length introduced in
the model by means of the parameter c [cf. Sluys et al. (1993)].

In Fig. 3 the distributions of stresses along the bar, at the end of the time interval, are
shown for the various meshes considered.

Figure 4 shows the time history of the reaction at the built-in end of the bar for the
different meshes. Figures 4a and 4b concern analyses done with different values of par­
ameters f3 and ./ of the time integration scheme: f3 = /' = 0.6 in Fig. 4a, f3 = f' = 0.5 in Fig.
4b. With the first choice the time integration algorithm shows a damping effect for high
frequencies. while with the second choice (average acceleration) no damping effect is
present. This difference in algorithmic damping can be appreciated by comparing the curves
in Fig. 4a and 4b. After plastification the value of the reaction oscillates; the oscillation are
rapidly damped in the case of Fig. 4a while are much more persistent in the case of Fig. 4b.
The damping effect is more appreciated for refined meshes i.e. with higher frequencies.
When the spurious oscillations are dumped, the response becomes almost mesh independent
due to the regularization effect of the gradient term.

The above results are in complete agreement with those presented in Sluys et al. (1993).
However, it should be noted that, with the present generalized variable formulation, only
first order continuity for interpolation of plastic multiplier is required. Moreover, due to
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1E-3

~ 80 elements

5E-4

~./0 elements
\

OE+O

o 20 40 60 80 100
x [mm]

Fig. 2. Strain profile along the bar at I = 2 x 10 4 S for the three meshes.

0' [MPa]

20 elements

80 Olomints-

~~~/ I

\
J~

i

~
Jo \--1-~---'-------'----'-I---.-----rI-----,---1i

o 20 40 60 80 100

x [mm]

Fig. 3. Stress profile along the bar at ( = 2 x 10 4 S for the three meshes.

the variational basis of the proposed discretization, no boundary conditions need to be
imposed to the generalized plastic multipliers.

5.2. Discussion on uniqueness
For the simple problem in point, it is possible to formulate the whole finite-step

problem as a linear complementarity problem, similarly to what done in the works of Maier
[see e.g. Maier (1968,1970)]. In fact, for the one dimensional problem in pure tension the
effective stress rp(eJ) is simply equal to eJ and from (32b) the generalized effective stress {/J

becomes:

(54)

Thus the yield condition (29a) reduces to:
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80 elements
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(a)
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2

1
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3 -- (b)
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2

o

O.OE+O 5.0E-5
I

1.0E-4
I

1.5E-4
I

2.0E-4

t[S]

Fig. 4. Evolution of the built-in end reaction for the three meshes Dynamic integration scheme:
(al f3 = ;. = 0.6. (b) f3 = .,' = 0.5.

and compatibility (30) reads:

(55)

(56)

Substituting (56) and (28) into the dynamic equilibrium equation (27), solving for ii the
resulting equation and substituting into (55), one obtains the following formulation of the
step problem
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where the following quantities have been introduced:

(58)

Problem (57) is a standard linear complementarity problem, with symmetric matrix of
coefficients A. Therefore, one can conclude that the solution of the one-dimensional problem
considered is unique in terms of Lll ifand only ifmatrix A is positive definite. The necessary
and sufficient uniqueness condition for Lll is a sufficient uniqueness condition for Llp, Llu,
M and Llii.

This condition is in general difficult to apply since matrix A is a dense, non-diagonal
matrix, with dimensions equal to the global number of nodes nn- The computation of A
implies the inversion of a matrix at the structural level. To obtain from the Necessary
and Sufficient uniqueness Condition a critical time-step amplitude LlINsc (such that for
Lll < Lll,vsc uniqueness is guaranteed and for Llt :;:, Llt"sc non uniqueness occurs), one has
to explicitly compute all principal minors a; and impose the condition a, > 0 for i = I, ...
n,,_

This has been done for the bar considered, discretized by only two elements of length
r. In this simple case all calculations can be carried out explicitly and the a; can be computed
as functions of Lll, of the softening coefficient h and of the gradient coefficient e.

Assuming in (58) (as the algorithmic lumped mass matrix, the resulting critical value
Llt"sc of Llt is plotted in Fig. 5a as a function of e for varying h. In this figure all quantities

are normalized as follows: Llt= Lll/To (To = 27[/wo = (27.://)2-)2))pjEbeing the first
eigenperiod of the discretized structure), (' = eW2 E, h = h/E. Notice that c:;:' 0 and
Ii E [ - 1,0] for softening behaviour excluding snap-back at the material level. As expected,
the critical time step Lll~sc decreases for increasing softening. The regularization effect of
the gradient term appears: the time step ensuring uniqueness increases with e and this effect
is amplified upon mesh refinement (decreasing element size l"). For all values of Ii there is
a range of c for which Llt\sc = 0, i.e. for which non uniqueness of Lll exists for every time
step. However, multiplicity of Lll does not necessarily imply multiplicity of solutions in
terms of displacements and stresses. We will come back to this point later.

Figure 5b shows the same kind of results computed with the consistent mass matrix.
The qualitative behaviour is exactly the same, but the critical values of Llt are smaller than
the corresponding ones of Fig. 5a, computed with the lumped mass matrix; this difference
tends to vanish for large ('. Even if the example is very simple, this indicates the influence
of the mass distribution on the uniqueness condition.

For the same problem, we have also computed the critical time step Lllsc (eqn 50)
resulting from the sufficient uniqueness condition established in Section 4.

This condition rests on the validity of inequality (44), proved under the hypothesis
that the Gauss points used to model stresses and strains coincide with those used for
numerical integration of all quantities. In this example only one Gauss point per element
has been used for stress and strain interpolations. The one point, reduced integration of
the softening matrix. defined in eqn (32c), gives a value ii'R which differs from the analytically
integrated one ii', defined in box I, and used in the analyses. However, one can easily prove
that:

_ Qeh[1
ii' +c' = ii'R + c'R ; where h'R == 4 I

where cR is positive semidefinite for:

I]. -e = (e +hl
e2 /12) _,, CR - C

I c
(59)
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Fig. 5. Nonnalized critical time step amplitude of the necessarv and sufficient uniqueness condition
versus normalized diffusion parameter Cfor varying nonnaliz~d softening parameter F; (a) lumped

mass matrix. (b) consistent mass matrix.

('?: -/DI2 (60)

Hence. if ('?: -hil2, it is possible to replace in (43) matrix fi+c with matrix fiR preserving
the inequality and thus make use of inequality (44) in order to prove the sufficient uniqueness
condition.

Proposition 3 has been applied with the above restriction (60). From the condition
of positive semidefiniteness of U«( + I)E+h one obtains (/«( + I) ?: -hiE = -h~ hence



3898 C. Comi and A. Corigliano

L1l'sc

1'°1

I

0.8

0.6

0.4

0.2

0.0

-1.0 -0.5 0.0
-h

Fig. 6. Normalized critical time step amplitude of the sufficient uniqueness condition vs normalized
softening parameter h~

( ~ (-h)/(l +11'). By taking ( = (-/D/(l +h). f3 = )' = 0.6, relation (50), which defines the
critical time step, gives:

_ tJ.1 5 wo/+/l__
tJ.1 = - < - - --------... = tJ.tsc

To 6rr WAf -h
(61 )

For the two-elements discretization, if one considers the lumped mass matrix it results
w~/w~ = (2 - )2)/(2 + )2), while with the consistent mass matrix it results:

w~;w~ = (5;3 - )2)/(5/3 +J2). The critical time step tJ.lsc, corresponding to the two
different mass matrices, is plotted in Fig. 6 as a function of h~ By comparing the critical
time step of the sufficient condition (Fig. 6) with that of the necessary and sufficient
conditions (Fig. 5), one can observe that. for a given h~ tJ.lsc results to be coincident with
!J.t'"":vsc corresponding to the break point of the curves of Fig. 5.

For tJ.t< !J.t"sc and c~ -h;12, uniqueness in terms of tJ.ii and tJ.p is guaranteed. To
have uniqueness also of tJ.J: one must have uniqueness of the linear complementarity
problem giving tJ.J: for assigned tJ.ii (i.e. of the linear complementarity problem of the
corrector phase defined by eqns (39), not to be confused with the global linear comp­
lementarity problem (57)). Namely, for a given tJ.ii the solution is unique in tJ.J: if and only
if matrix DC (see box I) is positive definite. From this condition one obtains the following
limitation on the amount of softening:

c> -i1;12 (62)

This means that if the gradient term c does not exist, or is too little, one has multiplicity of
solutions in terms of tJ.J: for any step amplitude.

This finding is in agreement with the global necessary and sufficient uniqueness
condition. In fact the critical situation given by relation (62), i.e. c= - h/12, corresponds
to the break points of the curves in Fig. 5a, b. For (~:( -11; 12, i.e. on the left of the break
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Fig. 7. Uniqueness and non uniqueness fields for /i = - 0.1 and lumped mass matrix.

point, uniqueness cannot be found for any value of /)."f. This situation corresponds to the
field 2 in Fig. 7, where the results concerning uniqueness have been summarized for
"it = - 0.1. In the region 3 of Fig. 7 one has non uniqueness in /).): and also in /).0. The
nonuniqueness in ~): follows from the fact that ~t is greater than /).t,sc. Moreover,
inequality (62) being satisfied being in this field. multiplicity of /).): is possible only if there
is multiplicity in /).0. In region I of the same figure, uniq ueness of L'lI and /).0 is guaranteed.

Remarks

I. For the problem considered in Section 5.1. one can easily compute a lower bound
on the critical time step which ensures uniqueness replacing in (61) the highest frequency
of the discretized system with the highest frsllency of the single finite element. In this case,
for one element, it results: CUM = (2/!''l,,/E/p and, with the data of Fig. I, one obtains

M sc = 2.5 X 10-
6

l". l" being the length of the finite element. For the finer mesh used in the
analyses (80 elements), the critical time step is then /).tsc = 3.125 x 10- 6 s. The time step
adopted in the analyses. /).t = 5 x 10-" s. is therefore in the range where uniq ueness of /).0
and /).p is guaranteed.

2. From the data of Fig. I. the conditions of applicability of proposition 3, eqn (60),
and of uniqueness in /).'X of the corrector step eqn (62), give: I" < - 12c/!z = 300 mm. which
is fulfilled by all the meshes considered.

6. CONCLUSIONS

In the presence of softening materials the dynamic evolution problem can become ill­
posed. As a result in step-by-step finite elements analyses some problems can arise, among
them pathological mesh dependence and possible non uniqueness of the finite step solution.

This paper focused on the dynamic elastoplastic softening problem regularized by the
introduction of the second order gradient of the equivalent plastic strains in the yield
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function, The Mises and Drucker-Prager models with linear isotropic softening have been
considered.

The results of the present study can be summarized as follows.
(a) A variational formulation of the dynamic finite-step problem has been presented,

The additional boundary conditions on plastic multipliers required by the considered
gradient model are part of the solution of the optimiza,tion problem, therefore they do not
intervene in the definition of the admissible set of plastic multipliers,

(b) A consistent finite element formulation in terms of generalized variables of the
finite step problem has been obtained by discretizing all fields appearing in the functional
of the variational property and by expressing its optimality conditions,

(c) Sufficient conditions for uniqueness of the solution of the dynamic finite-step
problem have been established, In particular a bound on the time-step amplitude ensuring
uniqueness has been derived. This bound depends on the amount of softening and on
inertia and stiffness properties through the maximum eigenfrequency,

(d) For a one-dimensional problem a necessary and sufficient condition for the unique­
ness of the dynamic finite-step problem has also been presented. This condition highlights
the regularization effect of the gradient term, Namely, the admissible time step amplitude
ensuring uniqueness increases as the coefficient of the gradient term increases,

The proposed formulation has been tested with reference to the same problem discussed
in Sluys et at. (1993). The results obtained are almost mesh independent and the material
internal length introduced by the gradient approach governs the amplitude of the localized
zone regardless the space discretization, The generalized variable approach seems therefore
well suited for gradient-dependent plasticity in the dynamic range.

The sufficient uniqueness condition has also been applied to the same problem and a
significant bound on the time step amplitude to be adopted in the analyses has been
computed,

Application of two dimensional problems of generalized variables finite elements with
nonlocal (gradient-dependent) material models can be found in Comi and Perego (1996)
for static and in Comi and Corigliano (1995) for dynamics.
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APPENDIX A-PROOF OF INEQUALITY (44)

The gradient of the generalized yield function ip with respect to the generalized stress vector can be expressed
in the following way:

(A.l)

In the above inequalities use has been made of relation (32b) defining ip. of the interpolation for stresses (22c)
and of the Gauss integration (34). With I\c defined by (36) and (35). where the set of nGp Gauss points is the
same as that used in (A.I). we find:

'\<p( <1( x"))"'I, (x')

ct c <P(<1(x'".) )N, (x"··.) J

Recall the definitions (33c) of tip and (37) of matrix ii and make use of (A.2J, to obtain:

(A.2)
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(A.3)

where I and 2 denote two different solutions.
It can.-l!Qw be observed that for the Mises effective stress <p(a) = J3J" or the Drucker-Prager effective stress

<p(a) = J3J, +'Y./,/3, the following relations hold:

(A.4)

Relations (A.4) express the fact that the norm of the vector normal to the yield surface is constant for any a and
that the scalar product of the vectors normal to the yield surface at a = a, and a = a, cannot exceed the product
of their norms.

Equation (A.3) written with 1 = 2 =. I = 2 = " and I = '.2 = ,. gives rise to the relations:

(A.5a, b)

(A.5c)

where the definition (32c) of ii, with h < 0, and the Gaussian integration rule (34) have been used. Combining
relations (A.5) one obtains:

(A.6)

which proves inequality (44).


